Smad expression in human atherosclerotic lesions: evidence for impaired TGF-beta/Smad signaling in smooth muscle cells of fibrofatty lesions.
نویسندگان
چکیده
OBJECTIVE Transforming growth factor-beta (TGF-beta) has been implicated in the pathogenesis of human atherosclerosis but its actions during lesion progression are poorly understood. Smad2, Smad3, and Smad4 proteins are signaling molecules by which TGF-beta modulates gene transcription. Our objective was to define the actions of TGF-beta during lesion progression in humans by examining the expression of Smads in relation to TGF-beta-mediated responses. METHODS AND RESULTS Immunohistochemistry and reverse-transcription polymerase chain reaction demonstrated Smad2, Smad3, and Smad4 expression in macrophages of fibrofatty lesions and their upregulation after differentiation of monocytes to macrophages. The major Smad splice variants expressed by the macrophages were those that are transcriptionally most active. Macrophages also expressed cyclin inhibitors whose expression is induced via Smad proteins. The cytoplasmic location of p21(Waf1) suggests it may protect macrophages from apoptosis. Smooth muscle cells (SMCs) within the fibrofatty lesions did not express the Smad proteins or the cyclin inhibitors. SMCs of fibrous plaques expressed all 3 Smad proteins. CONCLUSIONS In human atherosclerotic lesions, the actions of TGF-beta appear restricted to SMCs in fibrous plaques and macrophages in fatty streaks/fibrofatty lesions. The lack of key TGF-beta signaling components in SMCs of fibrofatty lesions indicates impaired ability of these cells to initiate TGF-beta-mediated Smad-dependent transcriptional responses.
منابع مشابه
Fibromuscular differentiation in deeply infiltrating endometriosis is a reaction of resident fibroblasts to the presence of ectopic endometrium.
BACKGROUND In this study, we characterized the fibromuscular (FM) tissue, typical of deeply infiltrating endometriosis, investigated which cells are responsible for the FM reaction and evaluated whether transforming growth factor-beta (TGF-beta) signaling is involved in this process. METHODS FM differentiation and TGF-beta signaling were assessed in deeply infiltrating endometriosis lesions (...
متن کاملModulation of IKKβ/NF-κB and TGF-β1/Smad via Fuzheng Huayu recipe involves in prevention of nutritional steatohepatitis and fibrosis in mice
Objective(s):Fuzheng Huayu recipe (FZHY) exerts significant protective effects against liver fibrosis by strengthening the body’s resistance and removing blood stasis. However, the molecular mechanisms through which FZHY affects liver fibrosis are still unclear. In this study, we examined the expression levels of factors involved in the inhibitor κB kinase-β (IKK-β)/nuclear factor-κB (NF-κB) an...
متن کاملDistinct patterns of transforming growth factor-beta isoform and receptor expression in human atherosclerotic lesions. Colocalization implicates TGF-beta in fibrofatty lesion development.
BACKGROUND Some animal studies suggest that transforming growth factor-beta (TGF-beta) protects vessels from atherosclerosis by preventing intima formation, but others indicate a role in vessel proteoglycan accumulation and lipoprotein retention. To distinguish between these possibilities in humans, immunohistochemical studies were performed examining the coexpression of TGF-beta isoforms and t...
متن کاملLAT-derived microRNAs in HSV-1 target SMAD3 and SMAD4 in TGF-β/Smad signaling pathway
Background: During its latent infection, HSV-1 produces only a miRNA precursor called LAT, which encodes six distinct miRNAs. Recent studies have suggested that some of these miRNAs could target cellular mRNAs. One of the key cell signaling pathways that can be affected by HSV-1 is the TGF-β/Smad pathway. Herein, we investigated the potential role of the LAT as well as three LAT-derived miRNAs ...
متن کاملAngiotensin II activates the Smad pathway in vascular smooth muscle cells by a transforming growth factor-beta-independent mechanism.
BACKGROUND Angiotensin II (Ang II) participates in vascular fibrosis. Transforming growth factor-beta (TGF-beta) is considered the most important fibrotic factor, and Smad proteins are essential components of the TGF-beta signaling system. Our aim was to investigate whether Ang II activates the Smad pathway in vascular cells and its potential role in fibrosis, evaluating connective tissue growt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 24 8 شماره
صفحات -
تاریخ انتشار 2004